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Introduction 
 
EO: rich and diverse source of data 

Offers differents views on Earth systems, 
environmental change, phenomenon 
occurring on Earth. 

Challenging topic for deep learning  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Introduction 
 

Training distribution   Training distribution   Training distribution  
Inference distribution   Inference distribution  

(e.g. diverse locations…)  (e.g. different sensors…) 

distribution mismatch ⇒ poor performances 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Introduction 
 Our goal is for EO pipelines to be robust against distribution shifts 
(sensors, areas, natural disasters…) 

1. Geospatial Foundation Models (GFMs)  2. Generative Domain Adaptation 

Large pretraining distribution 
→ learn rich image representations 

→ Transport the inference 
distribution to the training one 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Part.1  
 
PANGAEA: a Global and Inclusive 
Benchmark for Geospatial Foundation 
Models 
Valerio Marsocci*, Yuru Jia*, Georges Le Bellier, David Kerekes, Liang Zeng, Sebastian Hafner, Sebastian 
Gerard, Eric Brune, Ritu Yadav, Ali Shibli, Heng Fang, Yifang Ban, Maarten Vergauwen, Nicolas Audebert, 
Andrea Nascetti 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Geospatial Foundation Models 
 
Goal: learn useful 
representations of EO 
images on large datasets 

source: DOFA  

- task agnosticism 
- spatio-temporal 

awareness 
- sensor agnosticism 
- multimodality 
- adaptability 



9

Geospatial Foundation Models 
 
Large list of GFMs: which one should I use to solve my 
problem ?  
We need a robust benchmark 

- GFMs evaluate themselves on different setups 
- Benchmark targets: 

1.  Performance evaluation 
2. Fairness and robustness 
3. Guide improvements  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PANGAEA framework 
 

PANGAEA research questions: 

1. Generalization 
across domains 

2. Comparison to 
supervised baselines 

3. Performance with 
limited labels 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Datasets 
  BurnScars  MADOS  PASTIS-R  Sen1fl11  FBP  DynamicEN  CTM-SS  SpaceNet7  AI4Farms 

HLS S-2 L2R S-2 L2A S-2 L2A S-2 L2AS-2 L1C Gaofen-2 Planet Planet

S-1 GRD S-1 GRD S-1 SLC

Wildfire  Marine  Agriculture  Flood  Land cover  Agriculture  Change 
Detection 

Agriculture Land cover 

→ Pixel-level prediction (segmentation/regression/change detection) 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Datasets 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Geospatial Foundation Models 
 Selection criterions: 
– Open source GFMs + publicly available weigths (reproducibility) 
– Impact on the community 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Evaluation protocol 
 

- Same dataset preprocessing for all models (band-wise 
normalization) 

 

1. Dataset preprocessing 

- Band Matching + Adaptation (corresponding bands) 
- Zero-padding for missing bands 

We need to match datasets available bands with GFMs input bands 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Evaluation protocol 
 
2.  Decoder training 

- GFM are frozen encoders (usable for everyone) 
- UperNet decoder 

Dense 
Label 

Model 
Prediction 

Loss function 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Evaluation protocol 
 
3.  Multi-temporal datasets 
Multi-temporal models (e.g. Prithvi)  Single-temporal models  

Two different temporal aggregation 
strategies: linear or L-TAE 

Model 
Prediction 

Model 
Prediction 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Evaluation protocol 
 
4.  Data-scarcity 
- 50% or 10% of labels to train the decoder 

 

5.  Supervised baselines 
- Two supervised baselines: UNet and ViT-B/16 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Main results 

- UNet achieves strong results 
 
 



Data scarcity 
50% of labels 

 



Data scarcity 
10% of labels 

 

- UNet’s performances drop in data-scarce scenarios 
- Representations learned by GFMs are useful  

 
 



Pretraining resolution 

1. High-resolution data 
at pretraining is 
required to perform well 
on high-res. data at 
inference  

2. Pretraining bands 
should match inference 
ones (not sensor 
agnostic) 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Conclusion 
 PANGAEA is an open-source codebase 

They use PANGAEA: 
- AnySat, G.Astruc et al. 

[CVPR2025] 
- TerraMind, J.Jakubik et al. 

[ICCV2025] 

Includes: 
-  Datasets 
-  Models 
-  Decoder training 
-  Evaluation 



Part.2  
 
FlowEO: Generative 
Domain Adaptation for 
Earth Observation 
Georges Le Bellier, Nicolas Audebert 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Introduction 
  
- Heterogeneous Earth observation data 
- Distribution shifts 

  

Sensor changes  Flooding  Different areas 

 

 
 

 
- Obstacle to pre-trained models inference 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Introduction 
  
- Frozen pre-trained predictive model / on-the-shelf model 

   Train 

We want a domain adaptation method that is 
- Independent of the pre-trained model 

(architecture/features) 
- Unsupervised (no label used) 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Generative Domain Adaptation 
  Pixel space adaptation 

+ visual control 
+ explainability 
+ dense tasks 

Main goal 
→ Preserve semantic 
information 

Generative Domain 
Adaptation 

Idea 
→ Leverage new 
generative models 



32

PLAN 
 Part.1. PANGAEA 

- Geospatial Foundation Models 
- PANGAEA framework 
- Evaluation Protocol 
- Results 
- Conclusion 

Part.2. FlowEO 
- Domain adaptation 
- Flow Matching 
- FlowEO 
- Experiments & Results 
- Conclusion 



33

Flow Matching 
  
- Generalization of diffusion models introduced in 2022 [2, 3, 4] 
- Bridge arbitrary distributions       and      by learning a velocity field  

[2] Flow Matching for Generative Modeling, Y.Lipman et al. 
[3] Building Normalizing Flows with Stochastic Interpolants, M.Albergo et al. 
[4] Non-Denoising Forward-Time Diffusions, S.Peluchetti 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Flow Matching 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- Bridge arbitrary distributions       and      by learning a velocity field  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1. Sample 

Flow Matching 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1. Sample 

2. Sample time  

3. Interpolant 

 

Flow Matching 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1. Sample 

2. Sample time  

3. Interpolant 

4. Simple regression loss   

Flow Matching 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1. Sample 

  

Coupling and alignment 
 
Choice of the coupling? 

 
 

→ independent coupling  → data dependent 

 
 

Semantic 
alignment 

Unaligned 
 

Weakly aligned 
 
 

Strongly aligned 
 
 

→ data dependent 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FlowEO 
Training 

→ no predictive models, no labels used during training 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FlowEO 
Inference 

Solve                                     with            approximated by the learned model 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Experiments 

SpaceNet 6 
 

Sen1floods11 
 

BigEarthNet2 
 

Strongly aligned: 

Weakly aligned: 
SpaceNet 8 
 
 

Germany 
 
 
 

Louisiana 
 



44

Experiments 

FlowEO: 
 
  - SD3 latent space (4, 32, 32) 

- UNet backbone (same as for diffusion models) 

Evaluation: 
 
 

- Generation quality: LPIPS and FID 
- Semantic preservation: mIoU, mAcc, F1 

Baselines: 
 
 

- Trained with data-dependent coupling 
- Pix2pix, CycleGAN, StegoGAN, UNSB 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Results - strongly aligned 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Results - strongly aligned 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Results - weakly aligned 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Results - weakly aligned 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Conclusion 
- Flow matching improves segmentation scores. 
- Works well for (weakly/strongly) aligned datasets 
- FM models fail on non-aligned datasets to preserve semantic 

information. 

Future Work 
- New couplings for non-aligned datasets 
- Dedicated VAE training 
- New setups: data-augmentation/missing modality 



Bonus: Part.1+2  
 
FlowEO and GFMs: how to combine them ? 

Missing modality: use generative models to generate the missing modality 
(e.g. in timeseries) to take advantage of multimodal EO models. 

→ Similar to IBM’s Thinking in Modality (TiM). 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Thank for your attention 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Results - impact of the coupling 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Results - impact of VAE 
finetuning 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Results - sampling 


