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Abstract

The increasing availability of Earth observation data
offers unprecedented opportunities for large-scale environ-
mental monitoring and analysis. However, these datasets are
inherently heterogeneous, stemming from diverse sensors,
geographical regions, acquisition times, and atmospheric
conditions. Distribution shifts between training and deploy-
ment domains severely limit the generalization of pretrained
remote sensing models, making unsupervised domain adapta-
tion (UDA) crucial for real-world applications. We introduce
FlowEO, a novel framework that leverages generative mod-
els for image-space UDA in Earth observation. We leverage
flow matching to learn a semantically preserving mapping
that transports from the source to the target image distribu-
tion. This allows us to tackle challenging domain adaptation
configurations for classification and semantic segmentation
of Earth observation images. We conduct extensive exper-
iments across four datasets covering adaptation scenarios
such as SAR to optical translation and temporal and seman-
tic shifts caused by natural disasters. Experimental results
demonstrate that FlowEO outperforms existing image trans-
lation approaches for domain adaptation while achieving
on-par or better perceptual image quality, highlighting the
potential of flow-matching-based UDA for remote sensing.

1. Introduction
Large amounts of remote sensing images are collected

at high frequency to analyze and model the complexity of
physical phenomena on Earth. The diversity of the data
acquired calls into question the use of pretrained models to
process them. Indeed, the phenomena studied on the Earth’s
surface are non-stationary and subject to great variability due
to seasonal variations, human-made changes, and extreme
events such as wildfires and floods. This causes drifts in
the data distribution, compromising model performance at
inference [25]. In addition, sensors with complementary
characteristics are used to capture multiple views of the same
area and overcome sensor limitations, e.g. ground occultation
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Figure 1. FlowEO generates realistic and semantically consistent
outputs on various challenging image translation tasks, such as pre-
to post-disaster domain adaptation and SAR-to-Optical translation.

by clouds for optical sensors can be alleviated using radar.
Emergency management of natural disasters requires

rapid analysis of the ground-level situation to plan rescue op-
erations and assess environmental consequences. However,
the domain shift between post-disaster and ordinary satel-
lite images degrades the performance of off-the-shelf deep
models. The urgency of such events makes it impossible to
annotate a dataset for supervised training in disaster-affected
areas. Domain adaptation is therefore a promising solution
to speed up image analysis for disaster management.

Similarly, robust remote sensing pipelines leverage the
strengths of all available Earth observation sensors. For ex-



ample, Synthetic Aperture Radar (SAR) provides all-weather
day-and-night imaging capabilities, as its wavelength allows
it to penetrate clouds and operate independently of illumi-
nation conditions. However, due to their speckle noise and
sensitivity to terrain geometry, interpreting SAR images is
harder for humans than optical images [56]. Therefore, cross-
sensor domain adaptation has been well-investigated in Earth
observation. SAR-to-Optical translation (S2O) in particular
can provide human-interpretable optical images in contexts
where only SAR imagery is available [30, 58, 59], e.g. to
fill in missing optical due to cloud cover. This provides
higher frequency images by leveraging co-located multi-
modal SAR/optical acquisitions. In turn, this enables disas-
ter monitoring and environmental surveillance in scenarios
where acquiring cloud-free optical data is challenging.

Major efforts have been made in recent years to overcome
distribution drift through domain adaptation [25,44,55]. Due
to the low availability of labeled satellite image datasets, un-
supervised domain adaptation methods have been preferred
as they only require labels in the source domain. Unsuper-
vised domain adaptation is mainly studied inside the feature
space of a pretrained model [10, 62]. Because of the lower
dimensionality of the latent space, this favours classification
tasks [16, 31], although some approaches also have been
proposed for dense tasks such as segmentation [8,15,64]. To
overcome this limitation, domain adaptation can be applied
in image-space [67]. It facilitates the transfer interpretation
and improves explainability while disentangling transfer and
downstream tasks. Such image translation approaches are
orthogonal to future improvements in classifiers and can be
used with any inference model without retraining. To this
end, we employ flow matching models [1,33,43], a new fam-
ily of models that have demonstrated high-quality generation
across various modalities [13, 60].
FlowEO. We propose FlowEO, a new model that leverages
flow matching models for unsupervised domain adaptation in
Earth Observation. We introduce a novel domain adaptation
method in pixel-space, enabling visual interpretation, and
test it extensively on four datasets covering classification and
segmentation tasks, demonstrating its effectiveness for dense
downstream tasks in challenging scenarios of post-disaster
domain adaptation and sensor translation. In summary:

1. We introduce FlowEO, a new generative UDA method,
downstream-task-agnostic that does not require modifi-
cation or retraining of downstream predictive models.

2. We are the first to leverage latent flow matching for
data-to-data translation, on multiple remote sensing
modalities, including SAR, low-resolution, and high-
resolution optical data.

3. We introduce an application-driven evaluation protocol,
going beyond standard image generation metrics to as-

sess the impact of UDA on real-world Earth observation
tasks: semantic segmentation and classification.

2. Related Work
2.1. Unsupervised domain adaptation

Consider two distinct domains, represented by two
datasets D0 and D1. Suppose that one contains annotations,
i.e. D1 = {X1,Y1}. This is the source domain, on which a
predictive model S1 has been trained, e.g. for segmentation,
classification, regression, etc. Conversely, let D0 = {X0, ∅}
be the unlabeled target domain, on which we would like
to infer new predictions. The absence of annotations on
D0 prevents us from training a predictive model on it. In-
stead, we intend to use the existing model S1 for the new D0

data. However, the underlying differences between the two
domains will result in a drop in its performance if applied
directly to the new domain. Its generalization capabilities
do not allow direct transfer of segmentation scores. Domain
adaptation aims to extend a model’s performance beyond its
training domain by means of an adaptation procedure.

Domain adaptation techniques are split into two broad
families. First, domain adaptation can be applied post-hoc
on an existing predictive model. These approaches aim to
align the features obtained from the predictive model, e.g.
with optimal transport [10, 16], or fine-tuning/adapting the
weights of the model to the new domain [6, 62]. However,
every downstream model needs to be adapted, which can be
costly and constrains usage of “off-the-shelf” models. Sec-
ond, adaptation can take place directly in the data space, i.e.
image space in our case. Instead of adapting the model to the
target domain, the target data is altered to match the source
domain. This approach, called image-to-image translation
for domain adaptation [42], leverages conditional generative
models derived from style transfer [23].

2.2. Image translation for domain adaptation

Image translation builds upon the seminal work of
Pix2Pix [20], that trains an image-to-image model on paired
datasets using a combination of supervised regression loss
and an adversarial loss using a patch-wise GAN. It has been
extended to the unpaired setting into CycleGAN [69], lever-
aging cycle consistency by training two GANs in symmetry.
These models have been used for domain adaptation in multi-
ple settings, including dehazing [47], tactile perception [22],
and semantic segmentation [63]. More recent models in-
clude StegoGAN [61] that explicitly deals with features
that are impossible to match between the two domains, and
more recent generative model classes, e.g. diffusion models
and Schrödinger bridges [11, 49, 68]. The Unpaired Neural
Schrödinger Bridge [27], for example, has found success for
domain adaptation of medical CT scans [53].

Image translation for Earth Observation Such approaches
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Figure 2. FlowEO learns a latent flow between the source and target distributions in four stages: 1) the training image pairs are sampled
from the coupling p(x0, x1), 2) images are encoded in SD3 latent space, 3) we interpolate between the latent codes z0 and z1 to compute zt
for t ∼ U(0, 1), 4) we train the U-Net backbone vθ on a simple regression loss to match the conditional velocity ut(zt | z0, z1).

are also common in Earth Observation. For example, Ste-
goGAN [61] performs style transfer from satellite images to
maps and vice-versa. Natural disaster management is also
the subject of domain adaptation research, via flood simula-
tion using adversarial networks conditioned on physical mea-
surements [38]. SAR to optical (S2O) image translation is
especially popular because radar acquisitions can be carried
out despite cloud cover, optical sensors suffer from cloud
occultation. S2O imagery makes it possible to fill missing
optical acquisitions based on SAR images from close dates.
Research has leveraged various classes of generative models
for S2O, e.g. [45] uses a conditional GAN, [65] uses Cycle-
GAN, [28] uses diffusion bridges, and so on. FlowEO pushes
forward this state-of-the-art by integrating flow matching
models that deliver a better semantic-preserving transfer and
higher quality generation.

Flow Matching Flow matching models (FMMs) have
been introduced in the last years [1, 33, 43] and now rep-
resent the state of the art in generative models for various
applications [13, 39, 60]. However, flow matching models
also allow data-to-data transport between arbitrary distribu-
tions [2, 34], and remain less well-studied. Contrary to diffu-
sion bridges [1, 68] and Schrödinger Bridges [5, 11] that rely
on stochastic differential equations to transport data, the flow
is deterministic. Deterministic sampling processes [51, 52],
have been wildly used with diffusion models for image and
video editing and composition as they better preserve seman-
tic content than their stochastic counterparts [12, 17, 41, 57].
This property is promising in domain adaptation contexts,
where preserving semantics is critical. Moreover, unlike
previously described image translation methods, such as
Pix2Pix [20], CycleGAN [69], or UNSB [27], FMMs do

not rely on adversarial learning to align the endpoint dis-
tributions, making them easier to train and less sensitive to
hallucinations.

3. Method
Our goal is to apply an existing classifier or segmenter

S1 trained on source domain D1 on a new target domain
D0. We assume that we have access to samples from D0,
although we do not know their labels. To solve this unsuper-
vised domain adaptation problem, we introduce FlowEO to
perform domain adaptation in pixel space (see Fig. 1).

We train a flow matching model to build a bridge be-
tween the image distribution p0 of X0 (target) and p1 of X1

(source) (see Fig. 2). Let φ be the learned transfer, i.e. our
mapping from D0 to D1. To apply our existing predictive
model on data from the target domain, we first map it to
the source domain, i.e. our model predicts S1 (x̂1) (Fig. 3,
step 2). This prediction should be as close as possible to the
(unknown) ground truth y0, i.e. we want φ to preserve the
semantic information relevant to the task during transfer. By
transferring the images rather than adapting the predictive
model, FlowEO only depends on the datasets D0 and D1,
and neither on the task nor the model S1 (Fig. 3, stage 2).
This makes it applicable to a broad panel of tasks, and can
benefit from better predictive models without retraining.

3.1. Training the flow

Mapping domains Flow matching models have been used
extensively as generative models, mapping a normal dis-
tribution to the images’ latent distribution, similar to dif-
fusion models [13, 26, 32, 35]. However, flow matching
can also bridge between arbitrary distributions [1, 33]. Fol-
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Figure 3. FlowEO offers domain adaptation in image-space, making the adaptation independent of the downstream task and predictive
model used. At inference time, we adapt the image x0 into a synthetic image x̂1 by integrating the flow with an ODE solver and the learned
velocity vθ . Then, any predictive model S1/C1 can directly perform downstream tasks on the transferred images, without fine-tuning.

lowing this framework, we leverage a time-dependent flow
φ : [0, 1]× Rd guided by a velocity field ut describing the
trajectories of samples z moving from p0 to p1:

d

dt
φt(z) = ut(φt(z)) (1)

The flow φt results in a transport between p0 and p1 when
solving the Ordinary Differential Equation (ODE) defined
by Eq. (1) from t = 0 to t = 1. Conversely, solving the same
ODE with decreasing times t = 1 to t = 0 allows, by con-
struction, to transport p1 to p0. While the true velocity field
ut is intractable, it is approximated with a neural network
vθ(t, zt) trained with a simple regression and simulation-free
objective (Fig. 2):

LFM(θ) = Ez0,z1∼p(z0,z1)
t∼U([0,1])

∥∥vθ(t, zt)−ut(zt | z0, z1)
∥∥2 (2)

where pairs (z0, z1) are sampled from the joint distri-
bution p(z0, z1) also named coupling, that will be detailed
later. From these endpoints, we can build zt using an inter-
polant [1]. We use linear interpolants, i.e. zt = (1−t)z0+tz1
for which the conditional velocity field ut(zt | z0, z1) equals
z1 − z0. At inference time (Fig. 3, Stage 1), we deploy ODE
solvers to solve Eq. (1) by replacing the true velocity ut

with its neural network approximation vθ(t, ·). This way, we
generate the transferred observation ẑ1 by integrating the
ODE starting from z0 using the mapping φt following:

ẑ1 = φt=1(z0) = ODESolvervθ (z0, 0 → 1) (3)

Latent flow With high resolution Earth observation, image
dimensions need to be large to include enough spatial context.

For example, a 256× 256 tile covers only ≈ 100m× 100m
at 40 cm/px. Because training generative models at a high
resolution is compute-intensive, training generative models
in the latent space of a Variational Auto-Encoder (VAEs) has
become a common strategy to improve image generation and
accelerate sampling [14, 29, 46]. We train a flow model in
the latent space of a frozen pretrained VAE. Given an image
x, the VAE’s encoder E compress it into a latent z = E∗(x)
of lower dimensionality. The decoder D∗ generates images
from latent codes. Although this VAE was trained exclu-
sively on 3-channel RGB images and not specifically on
remote sensing data, the encoder still learns effective repre-
sentations for such inputs, including non-RGB modalities
like SAR. Due to differences in value distributions, the de-
coder is fine-tuned on SAR and multispectral domains prior
to the flow matching training (see Appendix A.2.2). In prac-
tice, this means that p0 and p1 represent the distributions of
latents z0 = E∗(x0) and z1 = E∗(x1) instead of the images
of X0, X1 in Eqs. (1) and (2).

3.2. Coupling

The properties of the transport learnt by the flow are
greatly influenced by the choice of the image pairs (x0, x1)
used to compute the loss function Eq. (2). The most com-
mon setup relies on an independent coupling, i.e. (z0, z1)
is sampled uniformly across all possible pairings. Recent
works [5, 34, 54] have introduced couplings inspired by op-
timal transport. However, their optimal transport coupling
is defined with the L2-distance between images. In image
space, there is no obvious reason that images with a small
pixel-wise Euclidean distance would be semantically sim-
ilar – an intuition we show to be true in Sec. 5.2. This
contradicts our goal to obtain a transfer that preserves se-



Dataset Target Source Resolution Task Size Alignment
SpaceNet 6 [48] SAR (aerial) RGB (WorldView-2) 2 m/px Segmentation 50 000 Strong
Sen1floods11 [4] SAR (Sentinel-1) Optical (Sentinel-2) 10 m/px Segmentation 64 512 Strong
BigEarthNet2 (reBEN) [9] SAR (Sentinel-1) Optical (Sentinel-2) 10 m/px Multi-label classification 237 871 Strong
SpaceNet 8 Germany [19] RGB (post-flood) RGB (pre-flood) 0.8 m/px Segmentation 5688 Weak
SpaceNet 8 Louisiana [19] RGB (post-flood) RGB (pre-flood) 0.8 m/px Segmentation 17 173 Weak

Table 1. Datasets used for domain adaptation. We evaluate post-flood to pre-flood adaptation and SAR-to-optical translation scenarios.

mantics. Because we leverage flow matching for image
translation, i.e. conditional generation, we can turn towards a
data-dependent coupling p(x0, x1) = p(x1|x0)p(x0) [2,50].
We therefore want to build image pairs of a semantically rel-
evant x1 in the p1 distribution, given an image x0 ∼ p0
instead of defining a new ad hoc joint distribution. Finally,
to sample latents from p(z0, z1), we first sample from the
image coupling p(x0, x1) and then encode the images.

3.3. Alignment
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Figure 4. Weakly-aligned image pairs from the SpaceNet 8 dataset,
affected by cloud coverage and natural disasters. Each column:
top=post-flooding imagery; bottom=pre-event imagery.

We aim at building pairs of images (x0, x1) that are se-
mantically close. Because remote sensing data is geospatial,
the coordinate metadata are available for each image. Thus,
we consider spatially aligned datasets, which is possible to
construct in most real-world applications, and leave geo-
graphical domain adaptation for future work. While coregis-
tration provides pairs of images that have a common location,
it does not ensure that the semantic information is shared
between the two images. Thus, we distinguish between:

• Strong semantic alignment: the two images x0 and x1

share the same semantics, i.e. y0 = y1. This is the ideal
scenario, though impractical, as it needs synchronized
acquisitions, or at least images of the same areas in
a short timeframe, such that no significant semantic
changes have occurred. This can be typically used to
address sensor shift, e.g., SAR to optical translation.

• Weak semantic alignment: the two images x0 and x1

partially share their semantics, i.e. the ground truths
are similar y0 ≈ y1. For example, these may be ac-
quisitions of the same geographical area but captured

on different dates. As shown in Fig. 4,changes in se-
mantics may be due to the construction of buildings
between the two acquisitions, harvested crops, cloud
coverage, natural disasters such as floods or fires, de-
forestation, moving objects, or any other event that can
shift semantics. Note that x1 in the dataset is not an
accurate representation of the transferred x0 because
of the changes. Yet, in the absence of labels, this pair
(x0, x1) is the best available coupling. We then as-
sume that the averaging of velocities in Eq. (2) is robust
to moderate semantic changes and preserves the main
transfer components between p0 and p1. This can be
used to address temporal shift, e.g. seasonal variations,
and before/after an extreme event.

4. Experimental setup

4.1. Datasets

We evaluate FlowEO for domain adaptation on three seg-
mentation and one classification datasets, listed in Tab. 1:
SpaceNet 6 [48], Sen1floods11 [4], BigEarthNet2 (reBEN)
[9] and SpaceNet 8 [19], split into Germany and Louisiana.
These datasets are paired, i.e. have multiple acquisitions for
the same area, allowing us to train image translation mod-
els with data dependent couplings. SpaceNet 8 contains
before/after images of flood event, semantic differences exist
in the images, making it “weakly aligned”. The others pair
images from close dates, resulting in a “strong” alignment.
We build 3-channels 256× 256 images using RGB for color
images, bands [4, 3, 2] for Sentinel-2, VV/HH/VH polariza-
tions for SAR images from SpaceNet 6 and reBEN, and
VV/VH/VH for Sen1Floods11. See Appendix B for details.

Downstream models We use the DeepLabv3+ architec-
ture [7] for semantic segmentation with a ResNet-34 back-
bone, ImageNet initialization, a batch size 512, and a learn-
ing rate of 0.001 with one-cycle cosine schedule. For classi-
fication, we follow the reBEN implementation [9] and train a
ResNet-50 with ImageNet initialization for 100 000 training
steps with a batch size of 512 and a linear-warmup-cosine-
annealing learning rate of 0.001. These models are trained
once and used to evaluate all image translation methods.



Datasets SpaceNet 8 SpaceNet 8 Germany SpaceNet 8 Louisiana
Post-flood → Pre-flood Post-flood → Pre-flood Post-flood → Pre-flood

mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓ mIoU ↑ Acc ↑ FID ↓ LPIPS ↓ mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
No adaptation 40.05 42.40 75.62 63.66 37.09 39.08 89.54 63.27 36.51 38.85 96.60 63.80
Upper bound 63.10 72.09 00.00 00.00 55.27 66.77 00.00 00.00 66.91 75.97 00.00 00.00

Pix2Pix 34.73 36.08 98.22 50.95 32.92 34.25 98.38 55.75 38.79 40.86 92.23 47.05
CycleGAN 40.70 43.35 54.31 55.70 39.35 41.79 62.80 59.46 42.39 45.14 52.80 52.92
UNSB 39.35 42.67 68.30 55.35 38.25 40.62 66.62 56.84 40.67 43.87 73.72 53.04
Diffusion Bridge 37.50 39.36 115.70 53.13 33.91 35.27 177.23 58.53 39.05 41.37 105.27 51.25
StegoGAN 38.62 40.58 66.61 58.07 36.74 38.78 90.42 63.50 40.14 42.29 68.56 54.58

FlowEO 44.65 48.79 60.32 45.50 41.27 45.29 82.74 53.63 47.19 52.30 59.65 41.95

Table 2. Quantitative results on domain adaptation for weakly aligned datasets. We report both segmentation (mIoU, mAcc) and image
quality metrics (FID, LPIPS) for SpaceNet 8 and its geographic subsets. FlowEO transports images while preserving its semantics, achieving
significant segmentation performance improvements in domain adaptation setting: 44.65 vs. 40.05 mIoU on SpaceNet 8. It also outperforms
the second-best model – CycleGAN – on segmentation accuracy after transfer.

Datasets Sen1Floods1 SpaceNet 6 ReBEN
SAR → Optical SAR → RGB SAR → Optical

mIoU mAcc FID LPIPS mIoU mAcc FID LPIPS APµ APM F1µ F1M FID LPIPS
No adaptation 06.22 49.72 297.22 84.84 31.94 41.01 275.05 79.48 17.46 17.43 02.31 01.31 339.36 85.99
Upper bound 55.14 71.28 00.00 00.00 84.94 90.74 00.00 00.00 79.26 65.28 74.28 62.84 00.00 00.00

Pix2Pix 51.50 62.31 20.64 31.33 56.48 63.43 130.42 41.89 41.09 27.88 43.93 25.79 62.84 17.56
CycleGAN 42.12 48.47 20.97 36.35 50.01 55.85 132.75 50.72 26.09 19.79 26.93 15.75 81.54 19.67
UNSB 42.69 48.85 23.01 35.01 52.43 61.04 72.48 45.81 25.61 20.71 29.52 19.45 113.73 35.64
Diffusion Bridge 42.41 50.31 18.71 39.93 51.22 58.37 94.15 46.37 18.44 15.79 24.43 05.80 80.97 20.74
StegoGAN 43.37 49.75 41.06 31.87 44.87 50.02 306.50 56.62 26.13 22.16 29.49 20.28 81.15 22.32

FlowEO 54.92 69.04 12.96 29.21 65.07 72.33 94.02 39.96 37.16 32.14 36.04 25.72 75.80 15.51

Table 3. Quantitative results on domain adaptation for strongly aligned datasets. We report both segmentation (mIoU, mAcc) or classification
(AP/F1) and image quality metrics (FID, LPIPS). FlowEO preserves achieves the best UDA segmentation performances, and on-par
classification performances with Pix2Pix.

4.2. Model comparison

Baselines We compare our FlowEO model against several
commonly used image translation baselines: Pix2Pix [20],
CycleGAN [69], StegoGAN [61], Diffusion Bridge [5], and
Unpaired Neural Schrödinger Bridges (UNSB) [27]. For
a fair comparison, we use data-dependent coupling for all
methods, even those that could be trained using indepen-
dent couplings (CycleGAN, StegoGAN, and UNSB), and
train all models for 200 000 steps. We follow official imple-
mentations for hyperparameters (cf. Appendix C). Except
CycleGAN, baselines are non-symmetric, thus we train two
separate models from domain X0 to X1 and then from X1 to
X0 when needed.

Hyperparameters We train our flow matching in the pre-
trained space of the VAE from Stable Diffusion 3 [13]. More
precisely, we use a distilled model that is smaller and more
compute efficient [3]. The flow is therefore performed on
the latent codes of dimensions 16× 32× 32. Because flow
matching is symmetrical, the same model can be used to
transfer from X0 to X1 and vice versa, while baselines re-
quire two models. We use the classical U-Net backbone to
train the flow [52] with 120 million parameters. The flow is

trained for 200 000 steps using gradient clipping and expo-
nential moving average. We use a learning rate of 1 × 10−4

with 1000 steps of linear warmup and a batch size of 256.
At inference time, we integrate the flow from Eq. (1) with
50 steps of the Euler ODE sampler. We use the sigmoid
time-scheduler introduced in [26] to focus on the times that
are close to the image spaces. See Appendix A.3 for more
insights and ablation studies about sampler design and Ap-
pendix A.4 for inference time and memory footprints.

4.3. Evaluation

Prediction metrics Because Earth observation tasks are
often dense predictions, we focus on domain adaptation for
semantic segmentation. For all methods, we first transfer
the images from the test set of each dataset using the image
translation model and then apply the same pretrained seg-
menter to obtain the semantic masks. We then compute mean
Intersection over Union (mIoU) and mean Accuracy (mAcc)
between the prediction on the transferred image x̂0 = φ(x1)
and the ground truth mask y0, that is only available for eval-
uation purposes. For reBEN, we use the standard multi-label
classification metrics: Average Precision (AP) and F1-score
(F1), both micro and macro, i.e. APµ, Fµ

1 , APM , FM
1 .
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Figure 5. Qualitative comparison of domain adaptation methods on segmentation datasets. The first column represents the input image x0,
the second and third depict the weakly or strongly aligned x1, and the others display the images generated by the different methods. Below
each image, we provide the corresponding prediction from the segmentation model S1 or the true segmentation mask y1 for the reference
image (third column). FlowEO outperforms other methods in both semantic preservation and image quality.

Image quality While it is not our main goal, we also eval-
uate the perceptual quality of the generated images as vi-
sual artifacts can hinder downstream performances and inter-
pretability. We compute both the Frechet Inception Distance
(FID) [18] and LPIPS [66] similarity between the transferred
images x̂0 and source images x1. Although commonly used,
note that these are initially designed for natural images and
not remote sensing imagery [21]. In addition, the size of
our test sets is under the recommended size to compute
FID. Despite the noise this might introduce, these metrics
remain useful proxies to assess broad tendencies regarding
the perceptual qualities of transferred images.

5. Results
5.1. Main results

We present domain adaptation and image quality met-
rics obtained by the compared image translation methods
in Tab. 2 (weakly aligned) and Tab. 3 (strongly aligned). In

addition to the results obtained by state-of-the-art models
and FlowEO, we include two comparison points:

• No adaptation: classification/segmentation metrics
of the pretrained model applied directly on the non-
transferred target data, i.e. the performance of S1 on
x0. This represents a lower bound of the expected per-
formance. Image quality metrics (FID and LPIPS) are
computed directly between images from D0 and D1

and show an estimate of how far away the two image
distributions are.

• Upper bound: classification/segmentation metrics of
the pretrained model on its source domain, i.e. the per-
formance of S1 on x1. This represents the performance
of an ideal semantic-preserving transfer from p0 to p1,
for which S1 is as accurate on x0 transferred as on x1.

Semantic preservation FlowEO consistently demon-
strates superior semantic preservation compared to existing



image translation models. It ranks first in the weakly aligned
setting (Tab. 2), significantly outperforming both the second-
best state-of-the-art transfer method (+4 mIoU points com-
pared to CycleGAN) and the no-transfer baseline by a large
margin (44.65 mIoU vs. 40.05 mIoU) on SpaceNet 8. Do-
main adaptation for pre/post-flood imagery is a particularly
challenging task considering the significant changes that im-
pact the images, as shown in Fig. 5. Note that only FlowEO
and CycleGAN successfully increase segmentation perfor-
mance over the no-adaptation baseline. FlowEO consistently
achieves the highest mIoU and mean accuracy across both
regions (Germany and Louisiana), demonstrating its effec-
tiveness in handling real-world geographic variations, even
when trained on smaller datasets (<10 000 samples).

For strongly aligned datasets (Tab. 3), FlowEO achieves
the best segmentation metrics on both Sen1Floods11 and
SpaceNet 6 datasets with respectively +3.42 and +8.59 in
mIoU compared to the second best transfer models. Some-
what surprisingly, Pix2Pix constitutes a strong baseline for
paired image translation and achieves the second-best per-
formance in this setting despite being the oldest model eval-
uated. On the ReBEN multi-label classification dataset, the
flow model and Pix2Pix perform competitively, trading first
and second places depending on the metric considered. De-
spite their training with data-dependent coupling, adversarial-
based methods struggle to offer semantic-preserving trans-
port. This suggests that adversarial objectives may be un-
aligned with semantic preservation by hallucinating new
instances e.g. clouds, that can reduce segmentation perfor-
mances (as shown for Sen1Floods11 in Fig. 5, fifth row)

Transferred image quality In addition to better preserv-
ing the semantics, FlowEO generates consistent high-quality
images. It ranks first in LPIPS and first or second in FID
on all datasets, both in weakly aligned RGB→RGB transfer
on SpaceNet 8 (Tab. 2) and strongly aligned SAR-to-optical
translation (SpaceNet 6, Sen1Floods11 and reBEN in Tab. 3).
Unlike previous methods, FlowEO does not rely on adversar-
ial loss functions explicitly designed to enhance perceptual
quality. Despite that, generated images remain of high qual-
ity and do not show hallucinations commonly attributed to
adversarial training. This trend holds for both weakly and
strongly aligned datasets. In particular, we observe that
FlowEO learns complex texture transfer on the post-to-pre-
disaster scenario, correctly mapping turbulent and murky
flood water to the usual river state (Fig. 5, third row).

5.2. Impact of the coupling

We report in Tab. 4 ablation results on SpaceNet 6 and
SpaceNet 8 domain adaptation and image generation using
the three couplings: independent, minibatch-OT [54], and
data-dependent. Minibatch-OT coupling outperforms the
independent coupling on the two datasets in segmentation

SpaceNet 8
Post-flood → Pre-flood

Coupling mIoU ↑ mAcc ↑ FID↓ LPIPS ↓
Independent p(x0)p(x1) 35.59 37.41 94.23 66.62
Minibatch-OT π(x0, x1) 37.26 39.28 84.44 63.93
Data-dependent p(x1|x0)p(x0) 44.65 48.79 60.32 45.50

Pre-flood/Post-flood
Coupling mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
Independent p(x0)p(x1) 35.60 37.80 80.26 67.88
Minibatch-OT π(x0, x1) 36.21 39.28 73.26 65.22
Data-dependent p(x1|x0)p(x0) 44.87 53.76 50.88 52.81

SpaceNet 6
SAR → RGB

Coupling mIoU ↑ mAcc ↑ FID↓ LPIPS ↓
Independent p(x0)p(x1) 45.25 50.75 145.02 65.94
Minibatch-OT π(x0, x1) 48.48 55.03 125.82 58.34
Data-dependent p(x1|x0)p(x0) 65.07 72.33 94.02 39.98

RGB → SAR
Coupling mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
Independent p(x0)p(x1) 45.74 50.85 105.47 64.69
Minibatch-OT π(x0, x1) 47.25 52.65 91.74 60.24
Data-dependent p(x1|x0)p(x0) 55.36 61.53 36.86 51.66

Table 4. Impact of coupling on generation quality and semantic
preservation during transfer. The OT-based coupling π(x0, x1)
fails to match the performance of the data-dependent coupling
p(x1|x0)p(x0), although it outperforms the independent coupling.

accuracy after domain adaptation and image quality. Yet,
data-dependent coupling outperforms them by a large margin
for domain adaptation (+17% mIoU on SpaceNet 6, +7%
mIoU on SpaceNet 8) and image quality (30% decrease
in FID on both datasets). This is expected since OT pairs
images based on Euclidean distance in pixel space, which is
irrelevant to semantics e.g. in SpaceNet 6 where it compares
SAR and RGB modalities. Yet, OT is also far behind the
data-dependent coupling in the favourable case of RGB to
RGB transport on SpaceNet 8. This confirms the importance
of data-dependent coupling – thus dataset alignment – to
preserve semantic information during flow-based transfer,
and motivates our focus on aligned datasets, even weakly.

6. Conclusion
We introduce FlowEO, a flow matching-based framework

for unsupervised domain adaptation in Earth Observation.
By learning a semantically consistent mapping between
source and target distributions, FlowEO consistently outper-
forms existing image translation methods for domain adap-
tation in five segmentation and classification tasks across
multiple challenging scenarios ranging from post-disaster
monitoring to SAR-to-Optical translation, while achieving
on-par or better image generation quality. FlowEO opens
the door to generic unsupervised domain adaptation with
possible extensions to semantic-based couplings based on
image similarity or image metadata embeddings to fare with
unpaired image translation scenarios in Earth observation.
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A. Details and ablations

A.1. Couplings

Figure 6. Comparison between the pairing matrices generated with
the different couplings for a batch on SpaceNet 8, from left to
right: independent coupling p(x0)p(x1), OT-coupling π(x0, x1),
data-dependent coupling p(x1 | x0)p(x0).

The choice of the coupling has been of prime impor-
tance to improve generation capabilities for flow matching
models [5, 34, 54]. Figure 6 shows the pairing matrices M
obtained with each coupling i.e. Mij = 1 iff latents xi

0 and
xj
1 are paired. The training batches are built by stacking

strongly or weakly aligned x0 and x1 images in order. Be-
cause the data-dependent coupling matches xi

0 with xi
1, its

pairing matrix is diagonal. We observe that the optimal
transport-based coupling (left) is poorly aligned with the
data-dependent coupling (center), suggesting that semantic
information matching cannot be solely recovered through
optimal transport.

In addition, we provide visual ablation results in Fig. 7,
which illustrate the necessity to use data-dependent cou-
plings to train FlowEO.

A.2. VAE finetuning

A.2.1 Implementation details

We use a distilled version of the VAE from StableDiffu-
sion 3 [13] to speed up training and inference. The encoder
is trained to reconstruct the latents produced by the origi-
nal encoder to preserve the latent space structure of the full
model. As shown in the main paper, our experiments show
that the reconstructions D(E(x)) of Sentinel-2 images are of
poor quality because the range and distribution of multispec-
tral images deviates from the pretraining dataset used for
Stable Diffusion. For the reBEN and Sen1Floods11 datasets
that use Sentinel-2 as source data, we finetune the decoder
of the distilled VAE on each dataset for 5000 iterations with
a learning rate of 10−4, 250 warmup steps, and cosine decay
learning rate scheduler. The decoder remains frozen when
training the flow. The remaining datasets use the original
pretrained decoder.

SpaceNet 8 Post-flood → Pre-flood

R
G

B mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
Base 44.65 48.79 60.32 45.50
Finetuned 44.33 48.71 81.75 51.64

SpaceNet 6 SAR → RGB

R
G

B mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
Base 65.07 72.33 94.02 39.96
Finetuned 64.63 72.17 111.66 42.77

Sen1Floods11 SAR → Optical

S2

mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
Base 51.45 57.63 24.33 29.22
Finetuned 54.92 69.04 12.96 29.21

ReBEN SAR → Optical

S2

APM F1M FID↓ LPIPS ↓
Base 27.02 15.97 168.85 16.88
Finetuned 32.14 25.72 75.80 15.51

Table 5. Impact of VAE fine-tuning on domain adaptation perfor-
mance and transferred image quality. Fine-tuning is beneficial for
Sentinel-2 imagery but not for classical RGB images.

A.2.2 Impact of VAE fine-tuning

Reconstruction SD VAE reconstruction error is higher on
non-RGB imagery, VAE finetuning improves reconstruction
RMSEs 237.04 vs. 357.91 and 0.058 vs. 3.760 on respec-
tively reBEN S2 and SpaceNet-6 SAR. This is unnecessary
for RGB and can be slightly detrimental. S2 images are nor-
malized from [0;10000] to [-1;+1] via band-wise min-max
normalization.

Generation We report in Tab. 5 metrics for flow models
trained with and without a fine-tuned VAE decoder. We
observe that fine-tuning the VAE decoder prior to learning
the flow matching has a positive impact when the final do-
main differs from usual RGB imagery. Indeed, fine-tuning
the decoder is beneficial for Sen11Floods11 and ReBEN,
for which the images are transferred in the Sentinel-2 color
bands. Because Sentinel-2 imagery uses the [0, 10 000]
range instead of the usual [0, 255], the pretrained decoder
is less effective, which reflects in image quality. Yet, on
SpaceNet 6 and 8, which use both standard RGB images,
there is no advantage of fine-tuning the decoder. It is even
detrimental, as we hypothesize that the decoder overfits to
the small training set, compared to the original dataset used
for StableDiffusion.

A.3. Sampling schedule

The choice of time discretization and inference-time
sampling strategy plays a crucial role in improving the
performance of diffusion models [24, 36, 37]. Recently,
kim2025simple introduced a sigmoid time-scheduler tailored
for flow matching models (see Eq. (4)). This scheduler is
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Figure 7. Impact of the training coupling p(x0, x1) on preserving semantic information during image translation. FlowEO employs
data-dependent coupling p(x1|x0)p(x0), which outperforms both minibatch-OT coupling π(x0, x1) and independent coupling p(x0, x1).

parametrized by κ which controls the distribution of sam-
pling steps across time. Higher values of κ concentrate
computational effort near the endpoints (t ≈ 0 and t ≈ 1),
whereas κ → 0 corresponds to the linear time schedule (see
Figure 8).{

ti =
sig

(
κ
(

i
N − 0.5

))
− sig

(
− κ

2

)
sig

(
κ
2

)
− sig

(
− κ

2

) : i = 0, ..., N

}
(4)

Despite originally designed for generative modeling with
flow matching models, i.e. mapping a Gaussian prior dis-
tribution to the data distribution, this time scheduling is
well-motivated in our setting where increasing the number
of sampling steps near the data distributions p0 and p1 is ben-
eficial. Tab. 6 presents a comparison between sigmoid and
linear time discretization, demonstrating consistent improve-
ments in segmentation metrics across all datasets and for all
numbers of inference steps. Image quality metrics exhibit
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Figure 8. Sigmoid time discretization, allocating more sampling
steps near the endpoints (t ≈ 0 and t ≈ 1).

only marginal improvements and, in some cases—such as on
the Sen1Floods11 dataset—even show slight deterioration.
Nevertheless, the performance gains in segmentation metrics
from using a sigmoid rather than a linear schedule diminish
as the number of inference steps increases. Also observe
that more sampling steps might not be beneficial for domain
adaptation. On the two datasets used for validation, 25 sam-
pling steps tends to perform on-par or better than 50 and 100
steps. We attribute this to slightly better preservations of
semantics with a low number of steps, which reduce small
but accumulating errors in the Euler integration. In practice,
we set κ = 10 and use 50 sampling steps for all experiments.

A.4. Compute time and memory footprint

We report memory and times in Tab. 7. We agree that
inference time is an issue, as flow matching is slower than
GANs. This is why we use a lighter distilled version of SD3’s
VAE (0.24s vs. 2.11s for encoding-decoding). Despite rely-
ing on ODE integration, FlowEO transfers a batch of 256 im-
ages in 7.79s on a single A100 with 50 NFE (≈30 ms/image).

B. Dataset details
For all datasets, we define three distinct splits: train, vali-

dation, and test. The training set is used to train both domain
adaptation methods and predictive models. To reflect real-
world scenarios – where retraining a generative model on
new data batches is impractical – we restrict the training of
image translation models to the training set. The validation
set is used for hyperparameter tuning and model selection
based on performance metrics, while the final reported met-

Sen1Floods11 SAR → Optical
mIoU ↑ mAcc ↑ FID↓ LPIPS ↓

25 Sampling Steps
Linear 54.60 72.22 13.99 28.91
Sigmoid κ = 10 55.05 72.50 14.38 29.02

50 Sampling Steps
Linear 54.26 71.79 13.06 28.86
Sigmoid κ = 10 54.46 71.94 13.46 28.90

100 Sampling Steps
Linear 54.10 71.59 12.87 28.85
Sigmoid κ = 10 54.19 71.66 12.95 28.86

SpaceNet 6 SAR → RGB
mIoU ↑ mAcc ↑ FID↓ LPIPS ↓

25 Sampling Steps
Linear 64.23 71.68 117.30 42.78
Sigmoid κ = 10 64.46 71.93 113.64 42.96

50 Sampling Steps
Linear 63.98 71.46 119.68 42.89
Sigmoid κ = 10 64.07 71.57 118.06 42.98

100 Sampling Steps
Linear 63.79 71.28 121.28 42.98
Sigmoid κ = 10 63.83 71.34 120.38 43.03

Table 6. Sigmoid schedule vs linear schedule (preliminary results,
FlowEO performances with only 100 000 training steps).

Model Train Mem. (GB) Inference Mem. (GB) Inference Time (s)

Pix2pix 29.44 (64) 14.59 (256) 0.09 (256)
CycleGAN 30.75GB (12) 14.56 (256) 0.06 (256)
StegoGAN 31.67GB (8) 24.05 (256) 1.94 (256)
UNSB 34.00GB (12) 0.398 (1) 0.11 (1)
FlowEO 30.42GB (256) 22.21 (256) 7.79 (256)

Table 7. Memory footprints and inference times on A100 40GB.
Batch sizes are indicated in brackets: measure (batch size). UNSB
official implementation only supports inference batch size of 1.

rics are computed on the test set.

SpaceNet 6 [48] is a multimodal dataset including optical
imagery (RGB bands) and SAR data (we select VV/HH/VH
polarizations) at a resolution of 2 m/px. From initial tiles, we
crop 256×256 images and apply an overlap of 50% to create
the training set. The segmentation masks have two different
classes: background and building. We use three different
splits: training (≈ 50000 samples), validation (≈ 1800),
and test (≈ 1800) sets. For the optical data, we use bands
[4, 3, 2], while for the SAR data, we utilize VV, HH, and VH
polarizations.

SpaceNet 8 [19] is a segmentation dataset that contains pre
and post-flood RGB images from Maxar for two different
locations: Germany and Louisiana. The segmentation masks
include three different classes: background, building, and
roads. Original tiles are downsampled with a factor 2 and



Datasets SpaceNet 8 SpaceNet 8 Germany SpaceNet 8 Louisiana
Post-flood → Pre-flood Post-flood → Pre-flood Post-flood → Pre-flood

mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓ mIoU ↑ Acc ↑ FID ↓ LPIPS ↓ mIoU ↑ mAcc ↑ FID ↓ LPIPS ↓
No adaptation 40.05 42.40 75.62 63.66 37.09 39.08 89.54 63.27 36.51 38.85 96.60 63.80
Upper bound 63.10 72.09 00.00 00.00 55.27 66.77 00.00 00.00 66.91 75.97 00.00 00.00
CycleGAN data-dependent 40.70 43.35 54.31 55.70 39.35 41.79 62.80 59.46 42.39 45.14 52.80 52.92
CycleGAN independent 40.64 43.26 52.85 55.17 40.34 43.54 88.04 62.01 41.94 44.80 58.70 53.82

FlowEO 44.65 48.79 60.32 45.50 41.27 45.29 82.74 53.63 47.19 52.30 59.65 41.95

Table 8. Quantitative results on domain adaptation for weakly aligned datasets. We report both segmentation (mIoU, mAcc) and image
quality metrics (FID, LPIPS) for SpaceNet 8 and its geographic subsets. CycleGAN benefits from the data-dependent coupling on SpaceNet
8 and Louisiana, despite being suited for unaligned data-translation.

Datasets Sen1Floods1 SpaceNet 6 ReBEN
SAR → Optical SAR → RGB SAR → Optical

mIoU mAcc FID LPIPS mIoU mAcc FID LPIPS APµ APM F1µ F1M FID LPIPS
No adaptation 06.22 49.72 297.22 84.84 31.94 41.01 275.05 79.48 17.46 17.43 02.31 01.31 339.36 85.99
Upper bound 55.14 71.28 00.00 00.00 84.94 90.74 00.00 00.00 79.26 65.28 74.28 62.84 00.00 00.00
CycleGAN data-dependent 42.12 48.47 20.97 36.35 50.01 55.85 132.75 50.72 26.09 19.79 26.93 15.75 81.54 19.67
CycleGAN independent 44.23 51.04 393.88 97.35 51.02 57.51 110.90 49.89 24.01 19.88 28.13 19.77 78.63 24.08

FlowEO 54.92 69.04 12.96 29.21 65.07 72.33 94.02 39.96 37.16 32.14 36.04 25.72 75.80 15.51

Table 9. Quantitative results on domain adaptation for strongly aligned datasets. We report both segmentation (mIoU, mAcc) or classification
(AP/F1) and image quality metrics (FID, LPIPS). On SAR-to-optical translation datasets, CycleGAN trained with independent coupling (i.e.,
unaligned training) yields marginally superior performance on downstream task metrics compared to data-dependent coupling. Nonetheless,
the coupling strategy does not alter its relative ranking with respect to FlowEO.

then cropped 256× 256 images with an overlap of 70% to
produce the training data. The final numbers of samples of
each split are 5688/88/88 for Germany and 17173/244/244
for Louisiana. The full SpaceNet 8 dataset is obtained by
merging the two subsets for each split.

Sen1Floods11 [4] provides SAR data (Sentinel-1) and op-
tical imagery (Sentinel-2) alongside water/non-water pixel-
level annotations at a resolution of 10 m/px. Random crop-
ping of 256× 256 images is computed for training images,
and deterministic cropping without overlap is provided for
validation and test sets. It results in a total of 64 512 patches
for training. To match the number of SAR bands with the
optical ones we duplicate the VH band, and then we use
bands [4, 3, 2] for optical data and VV/HH/VH polarization
for SAR data.

BigEarthNet2 (reBEN) [9] is a multi-sensor dataset in-
cluding Sentinel-1 and Sentinel-2 imagery. We used 237 871
training patches with the multiclass annotations for both clas-
sification and domain-adaptation models training, 122 342
for validation, and 119 825 for testing following the original
paper’s splits. To match the number of SAR bands with the
optical ones we duplicate the VH band, and then we use
bands [4, 3, 2] for optical data and VV/HH/VH polarization
for SAR data. We resize the original 120× 120 patches with
bilinear interpolation to match the 256 × 256 used for the
other datasets.

C. Hyperparameters
Pix2Pix We train two Pix2Pix models, one translating im-
ages from p0 to p1 and vice versa. We use the reference
PyTorch implementation available 1 and train the models
with the data-dependent coupling. We train the models with
a batch size of 1 for 200 000 training steps with a learning
rate of 2 × 10−4 and learning rate linear decay. Following the
reference implementation, we use the LSGAN [40] adversar-
ial loss. We deviate from the default hyperparameters for
λL1, which we decrease from 100 to 10 to fix blurry image
generation issues on ours datasets. The generator is a 9-
blocks ResNet and we use the PatchGAN discriminator [20]
with instance normalization.

CycleGAN The implementation of CycleGAN follows the
same hyperparameters set as the Pix2Pix mentioned above.
We train the models with a batch size of 1 for 200 000 train-
ing steps with a learning rate of 2 × 10−4 and learning rate
linear decay. We keep λL1 = 100 since it does not nega-
tively impact the training or the generated images’ quality.
We used the same network architectures as for Pix2Pix.

StegoGAN While the StegoGAN models use two gener-
ators, translating respectively from domain X0 to X1 and
vice versa, the training process is asymmetrical. Thus, we
trained two different models for each dataset, using the of-

1https://github.com/junyanz/pytorch- CycleGAN-
and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


ficial implementation2. We use LSGAN adversarial loss,
instance normalization, and train the model for 200 000 it-
erations with a learning rate of 2 × 10−4. We select the set
of loss weightings used for the GoogleMismatch dataset in
the original paper: λA = 10, λB = 10,λA = 10, λid = 0.5,
λcycle = 0.5 and λreg = 0.3 for the mask regularization loss.
Note that this last value is similar for all remote sensing
datasets used in StegoGAN: λcycle = 0.5 for GoogleMis-
match and λcycle = 0.3 for PlanIGN. The generator is a 9-
blocks-Resnet and we use the PatchGAN discriminator [20]
with instance normalization.

UNSB Schrödinger bridges map two arbitrary distributions
with forward and backward stochastic processes. Neverthe-
less, UNSB leverages an adversarial loss on p1 making the
training asymmetrical. Thus we train two different models,
translating respectively from domain X0 to X1 and vice versa.
We use the official implementation 3 and train the models for
200 000 iterations with a learning rate of 2 × 10−4. We use
the proposed set of hyperparameters: λGAN = 1, λNCE = 1,
λSB = 1. We use the same architectures as the other meth-
ods, namely 9-blocks-Resnet and PatchGAN discriminator
with instance normalization. We use 5 sampling steps at
inference, following original paper guidelines.

Diffusion Bridges Diffusion bridges establish mappings
between arbitrary distributions via forward and backward
stochastic processes. We adopt the formulation of [5] and
train the models for 200 000 iterations using an x1-prediction
objective, with a batch size of 32 and a learning rate of
2 × 10−4. The UNet backbone follows the same design as
FlowEO, but is adapted to operate directly on image inputs
rather than latent representations. Inference is performed
with 50 sampling steps, consistent with FlowEO.

D. CycleGAN with unaligned training
CycleGAN is a data-to-data translation framework origi-

nally designed to handle unaligned datasets through its cycli-
cal loss. However, in the context of pre- and post-disaster
datasets, we observe that CycleGAN benefits from the avail-
ability of co-registered pairs (data-dependent coupling im-
proves segmentation metrics) (Table 8). For SAR-to-optical
translation, the use of unpaired datasets can offer certain
advantages, though the performance gains are marginal and
do not alter its relative ranking compared to our method
(Table 9).

E. Additional quantitative results on reBEN
We include in Table 10 a detailed comparison of Pix2pix

and FlowEO on the ReBEN SAR-to-Optical domain adap-
2https://github.com/sian-wusidi/StegoGAN
3https://github.com/cyclomon/UNSB

tation dataset. It reveals that Pix2pix exhibits a pronounced
bias toward forest classes (Coniferous forest and Mixed forest
classes), which are disproportionately represented relative
to other categories. This class imbalance inflates micro-
averaged metrics, thereby explaining the discrepancy in
ranking between FlowEO and Pix2pix under micro- versus
macro-averaging.

F. Additional qualitative results
F.1. Qualitative classification results on reBEN

We provide here qualitative domain adaptation results for
reBEN, with transferred images for baselines and FlowEO
and predicted labels shown in Figure 9. As for the segmen-
tation tasks, this underlines both the visual quality of the
generated images by FlowEO and the accuracy of the predic-
tions by the pre-trained classification model on the adapted
images. In addition to the generated optical images, we show
the top-3 predicted classes, i.e. the 3 classes with the highest
probabilities predicted by the classification model C∗

1 .

F.2. Additional image generation results

We provide in Figure 10 additional image generation
results for a more exhaustive assessment of our image trans-
lation approach. We can observe that FlowEO tends to better
capture the color range of the reference images, avoid hal-
lucinations, and better reconstruct the scene geometry. In
particular, note that FlowEO is robust to changes between
the source and target images, e.g. clouds and boats that have
moved. Interestingly, this shows the potential of flow match-
ing for inverse problems in Earth observation, such as cloud
removal.

https://github.com/sian-wusidi/StegoGAN
https://github.com/cyclomon/UNSB


Pix2Pix FlowEO Pix2Pix FlowEO #test samples Proportions
AP F1

Macro metric M 27.88 32.14 25.79 25.72
Micro metric µ 41.09 37.16 43.93 36.04

Industrial or commercial units 13.79 25.43 22.47 34.09 2018 0.0058
Arable land 64.25 73.77 62.05 69.89 50052 0.1446
Permanent crops 6.69 11.42 05.02 12.19 5710 0.0165
Pastures 35.01 42.38 22.84 36.22 26722 0.0772
Complex cultivation patterns 24.70 30.58 08.06 36.28 22078 0.0638
Land principally occupied by agriculture, with significant areas of natural vegetation 31.46 35.99 33.35 30.75 29846 0.0862
Agro-forestry areas 22.62 44.25 05.55 18.56 9942 0.0287
Broad-leaved forest 32.76 41.63 22.76 20.68 36377 0.1051
Coniferous forest 54.65 54.95 57.82 30.66 39043 0.1128
Mixed forest 52.64 49.57 58.93 29.07 44284 0.1280
Natural grassland and sparsely vegetated areas 01.57 02.30 00.08 02.32 2211 0.0064
Moors, heathland and sclerophyllous vegetation 03.74 05.31 02.39 02.70 3759 0.0109
Transitional woodland, shrub 43.34 44.00 45.68 29.54 40523 0.1171
Beaches, dunes, sands 00.92 00.75 03.88 02.29 152 0.0004
Inland wetlands 05.26 04.98 08.96 09.24 4519 0.0131
Coastal wetlands 00.09 00.09 00.28 00.11 117 0.0003
Inland waters 33.79 34.17 26.53 25.78 16846 0.0487
Marine waters 69.16 68.78 66.72 55.48 11854 0.0343

Table 10. Performance comparison of Pix2pix and FlowEO on the ReBEN SAR-to-Optical domain adaptation dataset. Pix2pix shows a
strong bias toward forest classes, which are overrepresented relative to other categories. The high performance on these dominant classes
inflates micro-averaged metrics, accounting for the difference in ranking between FlowEO and Pix2pix under micro- versus macro-averaging.
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Figure 9. Qualitative comparison of domain adaptation methods on the reBEN dataset, for multiclass classification. The first column
represents the source domain image x0, the second depicts the weakly or strongly aligned x1, and the others display the images generated by
the different methods. Below each image generated, we provide the corresponding top-3 predicted classes by the classification model C1.
For the reference image, we display all the class labels. FlowEO outperforms other methods in both class preservation and image quality.
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Figure 10. FlowEO generates the highest-quality images while maintaining semantic consistency during the transfer process. In the third
row, we observe that our method demonstrates greater robustness to the geometric artifacts present in SAR imagery. Additionally, we note
that it successfully learns to map flood-disturbed water states to a more natural appearance (fourth row).
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