Riemannian Flow Matching for Interferometric SAR

Georges Le Bellier¹

W @lebellig.bsky.social

Dana El Hajjar³
Arnaud Breloy¹
Nicolas Audebert^{1,2}

- 1. CNAM
- 2. Université Gustave Eiffel, IGN-ENSG
- 3. Université Savoie Mont Blanc

Introduction

Goal: ground subsidence monitoring

- large scale & long term
- ground-based methods are costly and have limited spatial coverage

Introduction

Goal: ground subsidence monitoring

- large scale & long term
- ground-based methods are costly and have limited spatial coverage

Interferometry with SAR (InSAR)

- covers large areas
- unaffected by weather
- sub-centimeter accuracy

Interferograms

$$\mathbf{w} = \Delta \Phi = \Delta \Phi_{disp} + \Delta \Phi_{topo} + \Delta \Phi_{orb} + \Delta \Phi_{atm} + \Delta \Phi_{noise}$$
 we want to remove it

Noisy interferogram ${f w}$

Multi-temporal InSAR:

- clean denoised interferograms
- leverage temporal dependencies

Multi-temporal InSAR:

- clean denoised interferograms
- leverage temporal dependencies

But...

- you need the full timeseries
- computational cost

Questions?

1. Denoising

Can we generate the output of the multi-temporal algorithm from a unique noisy interferogram?

No need for the full timeseries

Questions?

1. Denoising

Can we generate the output of the multi-temporal algorithm from a unique noisy interferogram?

No need for the full timeseries

2. Generation

Can we generate valid $\mathbf{w}_i \in [0, 2\pi[$ interferograms from noise?

Data augmentation/dataset generation

- Generalization of diffusion models introduced in 2022 [2, 3, 4]
- Bridge arbitrary distributions p_0 and p_1 by learning a velocity field $u_t(\cdot)$

$$\frac{d}{dt}\varphi_t(x) = u_t(\varphi_t(x))$$

[4] Non-Denoising Forward-Time Diffusions, S.Peluchetti

^[2] Flow Matching for Generative Modeling, Y.Lipman et al.

^[3] Building Normalizing Flows with Stochastic Interpolants, M.Albergo et al.

- Generalization of diffusion models introduced in 2022 [2, 3, 4]
- Bridge arbitrary distributions p_0 and p_1 by learning a velocity field $u_t(\cdot)$

- [2] Flow Matching for Generative Modeling, Y.Lipman et al.
- [3] Building Normalizing Flows with Stochastic Interpolants, M.Albergo et al.
- [4] Non-Denoising Forward-Time Diffusions, S.Peluchetti

1. Sample $(x_0,x_1)\sim p(x_0,x_1)$

- 1. Sample $(x_0,x_1)\sim p(x_0,x_1)$
- 2. Sample time $t \sim U(0,1)$
- 3. Interpolant $x_t = (1-t)x_0 + tx_1$

- 1. Sample $(x_0,x_1)\sim p(x_0,x_1)$
- 2. Sample time $t \sim U(0,1)$
- 3. Interpolant $x_t=(1-t)x_0+tx_1$
- 4. Simple regression loss

$$egin{aligned} \mathcal{L}_{ ext{FM}}(heta) &= \mathbb{E} \|v_{ heta}(t,x_t) - u_t(x_t|x_0,x_1)\|^2 \ \mathcal{L}_{ ext{FM}}(heta) &= \mathbb{E} \|v_{ heta}(t,x_t) - (x_1-x_0)\|^2 \end{aligned}$$

Riemannian Manifold

Interferogram's pixels are in $[0,2\pi[$

Riemannian Flow Matching [4]

- 1. Sample $(x_0, x_1) \sim p(x_0, x_1)$
- 2. Sample time $t \sim U(0,1)$
- 3. Interpolant $x_t = \exp_{x_1} \left(\kappa(t) \log_{x_1} (x_0) \right)$ use the geodesic on the torus

Riemannian Flow Matching [4]

- 1. Sample $(x_0,x_1)\sim p(x_0,x_1)$
- 2. Sample time $t \sim U(0,1)$
- 3. Interpolant $x_t = \exp_{x_1} \left(\kappa(t) \log_{x_1} (x_0) \right)$
- 4. Simple regression loss

Experiments

1. Denoising

 p_0 : noisy interferograms

 p_1 : interferograms denoised by COFI-PL

 $p(x_0,x_1)$: clean/noisy pairs [5]

Experiments

1. Denoising

 p_0 : noisy interferograms

 p_1 : interferograms denoised by COFI-PL

 $p(x_0,x_1)$: clean/noisy pairs [5]

2. Generation

 p_0 : wrapped gaussian

 p_1 : interferograms denoised by COFI-PL

 $p(x_0,x_1)$: independent

Implementation

Dataset:

- 40 SAR Sentinel-1 SLC images of Mexico City
- Interferograms cleaned with COFI-PL
- Every 12 day between 14/08/19 and 6/12/20
- Downsampled (x4)
- 128x128px patches
- Spatial split between train/test

Implementation

Dataset:

- 40 SAR Sentinel-1 SLC images of Mexico City
- Interferograms cleaned with COFI-PL
- Every 12 day between 14/08/19 and 6/12/20
- Downsampled (x4)
- 128x128px patches
- Spatial split between train/test

Neural Network:

- U-Net backbone (60M params)
- 100 000 training steps with batch size of 32
- 50 sampling steps (Euler solver)

Generation

 p_1 : clean interferograms

Generation

Riemannian Flow Matching

Generation

Riemannian Flow Matching Euclidian Flow Matching Invalid points $\mathbf{w}^{(i)}
otin [0, 2\pi]$ Valid interferograms

Conlusion

- Riemannian Flow Matching generates valid interferograms from noise.
- RFM produces expected patterns and textures.
- RFM generates interesting denoised interferograms from a single noisy phase difference.

Conlusion

- Riemannian Flow Matching generates valid interferograms from noise.
- RFM produces expected patterns and textures.
- RFM generates interesting denoised interferograms from a single noisy phase difference.

Next steps

- Evaluation on synthetic data for comparison with baselines.
- Condition RFM on the time period between two SAR images.
- Use multiple MT-denoisers as supervision.
- Can we learn the denoised interferograms without supervision?

Conlusion

- Riemannian Flow Matching generates valid interferograms from noise.
- RFM produces expected patterns and textures.
- RFM generates interesting denoised interferograms from a single noisy phase difference.

Next steps

- Evaluation on synthetic data for comparison with baselines.
- Condition RFM on the time period between two SAR images.
- Use multiple MT-denoisers as supervision.
- Can we learn the denoised interferograms without supervision?

Questions?

Riemannian Flow Matching [4]

- 1. Sample $(x_0,x_1)\sim p(x_0,x_1)$
- 2. Sample time $t \sim U(0,1)$
- 3. Interpolant $x_t = \exp_{x_1} \left(\kappa(t) \log_{x_1} (x_0) \right)$

$$egin{aligned} \exp_{\mathbf{w}}(\cdot): T_{\mathbf{w}}\mathbb{T}_d &
ightarrow \mathbb{T}_d \ \log_{\mathbf{w}}(\cdot): \mathbb{T}_d &
ightarrow T_{\mathbf{w}}\mathbb{T}_d \ & \left\{egin{aligned} \exp_w(u) = (w+u) \pmod{2\pi} \ \log_{w_a}(w_b) = rctan 2 \sin(w_b-w_a), \cos(w_b-w_a) \end{aligned}
ight.$$

